Deep Wide-field Space-based Imaging

and Galactic Structure

Neill Reid: ST'Scl

Wide-field surveys (POSSI&II, 2MASS, SDSS, SNAP, etc.) don’t just image galaxies.

Starcount analyses probe the structure of our Galaxy
= provide insight to galaxy formation

SNAP permits detailed study of the Galactic halo*, in situ at Z > 5 kpc.
= first major epoch of star formation
Still the only halo where such detailed observations are possible.

* Galactic halo = old, metal-poor stellar population
e Age: 12 to 14 Gyrs
e Mass: few x 109 M

Local number density: ~1:200 relative to disk

Metallicity: < 0.1 solar

Kinematics: Low rotation, high velocity dispersion

Spatial distribution: near-spheroidal
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Why is deep imaging necessary? 1
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A(m) = [ volume . density

A(m) reaches maximum at approximately twice the effective scaleheight
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Why is deep imaging necessary? 2
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Starcount analysis relies on photometric distance estimators
Ground-based surveys probe magnitudes brighter than V~21 to 22
= M, < +5 in the halo

e Red giants - steep CMD, poor distance estimator

e Subgiants - abundance sensitivity, poor distance estimator

e Turnoff stars - steep CMD, poor distance estimator

e HB stars - abundance sensitivity, moderate distance estimator

Need to go deeper to reach unevolved subdwarf main sequence.
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Why space-based imaging? 1
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Galaxy counts vs. starcounts at b=30, 60, 90°

e (Galaxies dominate counts at faint magnitudes in high-latitude fields
outnumber stars by factors of 10 to 100 at V> 21

e Galactic structure analysis requires high accuracy star/galaxy separation techniques



Why space-based imaging? 2

PSR 1640 Field
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Analysis of groundbased observations is limited by seeing

Require large fields of view - so AO is little help

Galaxies basically look like K stars - can’t separate by colour

Fainter than R~26.5/27, a significant number of galaxies are expected to have dimensions of

< 0.1 arcsecond

— limit for purely morphological starcount studies
(use colour selection+proper motions?)

Brighter than R=26.5, space-based observations provide a significant improvement over ground-

based measurements



Expected stellar surface densities

R Nstar) N(galaxy) Stars/sq. deg. (Mpg)

21.5 30 99 2570 5
22.5 33 208 2830 6
23.5 44 435 3770 7
24.5 5 911 6430 8

Based on Keck PSR1640 observations (Reid et al, AJ, 1996)
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What can we measure? 1

The density distribution in the halo
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1. SDSS RR Lyrae data suggest halo truncation at ~ 40 kpe. (Ivezic et al., 2000).
Do subdwarfs show the same effect?

2. Spatial sub-clustering: 1 sq. deg. = 30,000 pc? at 10 kpc.
kinematic sub-structure (moving groups) is present in the halo (mergers?)
how uniform/well-mixed are halo field stars



What can we measure? 2

Proper motions at moderate—large distances above the Plane

Vi n 1

po= p="yr™", for Vp in kms~

So =1 mas yr~* for Vy=25 kms™! at 5 kpc.

= can examine kinematics (dispersion, rotation, moving groups) for 1 < Z < 7 kpc.
i.e. disk/halo transition region

What about cool white dwarfs?

, T in pc.
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Data from Liebert et al. (1988) as updated by Mendez & Ruiz (2001).
Cutoff in ®(My ) can probe the age of thick disk/halo, although.....
Halo — expect cutoff at My ~ 17.5

fully sampled only at V~ 34 !

What about dark matter (Oppenheimer et al, Nelson et al)
— almost certainly irrelevant



What can we measure? 2
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H, = V+5+5logp = M, + 5logVp —3.37

(Hy, (V-I)) sequence traces (My, (V-I)) sequence, offset by an amount dependent on the mean
kinematics of the underlying population:
disk ~ 80 kms~!; halo ~ 275 kms™! for Groth strip

Groth strip white dwarfs match low-velocity white dwarfs (i.e. disk)
not classical, non-rotating dark matter

If they're dark matter,

1. Why do they match the younger cooling branch?
2. Why is the dark matter halo rotating?

3. Why is the (near-contemporary) stellar halo not rotating?

Evidence of inconsistency with model A # evidence in favour of model B



What can we measure? 3

The halo subdwarf luminosity function
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For extreme halo stars ([M/H]<-1.5), H-burning limit falls at My ~ 15
— limited sampling volume

Is W(M) flatter in the field than in most globular clusters?
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Science issues: summary

. Halo density law - from counts at faint magnitudes
is there an edge to the halo?
Spatial sub-clustering - how well-mixed is the halo?
Vertical density distribution for very late-type disk dwarfs.

. Proper motions for faint halo stars
— kinematics in thick disk/halo at Z>1.5 kpc.

. Probe halo luminosity function at faint absolute magnitudes in situ

. Repeat observations should allow identification of faint variable stars (statistics on flares in
low-mass halo subdwarfs?), contact binaries and, in particular, eclipsing binary systems =
potential mass measurements (if the candidates are accessible to spectroscopy)

Limitations

. Limited coverage in (1, b) = limited sensitivity to certain structural parameters
. Star/galaxy separation requires well understood psf as f(position)

. Even relative astrometry requires stable psf as f(position)

Deep starcount studies demand stable, reliable, well-calibrated images
— but so does the supernova project....



